Measurement of Atmospheric Temperature Profiles Using Raman Lidar

1979 ◽  
Vol 18 (2) ◽  
pp. 225-227 ◽  
Author(s):  
R. Gill ◽  
K. Geller ◽  
J. Farina ◽  
J. Cooney ◽  
A. Cohen
2015 ◽  
Vol 15 (10) ◽  
pp. 5485-5500 ◽  
Author(s):  
A. Behrendt ◽  
V. Wulfmeyer ◽  
E. Hammann ◽  
S. K. Muppa ◽  
S. Pal

Abstract. The rotational Raman lidar (RRL) of the University of Hohenheim (UHOH) measures atmospheric temperature profiles with high resolution (10 s, 109 m). The data contain low-noise errors even in daytime due to the use of strong UV laser light (355 nm, 10 W, 50 Hz) and a very efficient interference-filter-based polychromator. In this paper, the first profiling of the second- to fourth-order moments of turbulent temperature fluctuations is presented. Furthermore, skewness profiles and kurtosis profiles in the convective planetary boundary layer (CBL) including the interfacial layer (IL) are discussed. The results demonstrate that the UHOH RRL resolves the vertical structure of these moments. The data set which is used for this case study was collected in western Germany (50°53'50.56'' N, 6°27'50.39'' E; 110 m a.s.l.) on 24 April 2013 during the Intensive Observations Period (IOP) 6 of the HD(CP)2 (High-Definition Clouds and Precipitation for advancing Climate Prediction) Observational Prototype Experiment (HOPE). We used the data between 11:00 and 12:00 UTC corresponding to 1 h around local noon (the highest position of the Sun was at 11:33 UTC). First, we investigated profiles of the total noise error of the temperature measurements and compared them with estimates of the temperature measurement uncertainty due to shot noise derived with Poisson statistics. The comparison confirms that the major contribution to the total statistical uncertainty of the temperature measurements originates from shot noise. The total statistical uncertainty of a 20 min temperature measurement is lower than 0.1 K up to 1050 m a.g.l. (above ground level) at noontime; even for single 10 s temperature profiles, it is smaller than 1 K up to 1020 m a.g.l. Autocovariance and spectral analyses of the atmospheric temperature fluctuations confirm that a temporal resolution of 10 s was sufficient to resolve the turbulence down to the inertial subrange. This is also indicated by the integral scale of the temperature fluctuations which had a mean value of about 80 s in the CBL with a tendency to decrease to smaller values towards the CBL top. Analyses of profiles of the second-, third-, and fourth-order moments show that all moments had peak values in the IL around the mean top of the CBL which was located at 1230 m a.g.l. The maximum of the variance profile in the IL was 0.39 K2 with 0.07 and 0.11 K2 for the sampling error and noise error, respectively. The third-order moment (TOM) was not significantly different from zero in the CBL but showed a negative peak in the IL with a minimum of −0.93 K3 and values of 0.05 and 0.16 K3 for the sampling and noise errors, respectively. The fourth-order moment (FOM) and kurtosis values throughout the CBL were not significantly different to those of a Gaussian distribution. Both showed also maxima in the IL but these were not statistically significant taking the measurement uncertainties into account. We conclude that these measurements permit the validation of large eddy simulation results and the direct investigation of turbulence parameterizations with respect to temperature.


2021 ◽  
Author(s):  
Julien Totems ◽  
Patrick Chazette ◽  
Alexandre Baron

Abstract. Lidars using vibrational and rotational Raman scattering to continuously monitor both the water vapor and temperature profiles in the low and middle troposphere offer enticing perspectives for applications in weather prediction and studies of aerosol/cloud/water vapor interactions by deriving simultaneously relative humidity and atmospheric optical properties. Several heavy systems exist in European laboratories but only recently have they been downsized and ruggedized for deployment in the field. In this paper, we describe in detail the technical choices made during the design and calibration of the new Raman channels for the mobile Weather and Aerosol Lidar (WALI), going over the important sources of bias and uncertainty on the water vapor & temperature profiles stemming from the different optical elements of the instrument. For the first time, the impacts of interference filters and non-common-path differences between Raman channels, and their mitigation, are particularly investigated, using horizontal shots in a homogenous atmosphere. For temperature, the magnitude of the highlighted biases can be much larger than the targeted absolute accuracy of 1 °C defined by the WMO. Measurement errors are quantified using simulations and a number of radiosoundings launched close to the laboratory.


2014 ◽  
Vol 14 (21) ◽  
pp. 29019-29055 ◽  
Author(s):  
A. Behrendt ◽  
V. Wulfmeyer ◽  
E. Hammann ◽  
S. K. Muppa ◽  
S. Pal

Abstract. The rotational Raman lidar of the University of Hohenheim (UHOH) measures atmospheric temperature profiles during daytime with high resolution (10 s, 109 m). The data contain low noise errors even in daytime due to the use of strong UV laser light (355 nm, 10 W, 50 Hz) and a very efficient interference-filter-based polychromator. In this paper, we present the first profiling of the second- to forth-order moments of turbulent temperature fluctuations as well as of skewness and kurtosis in the convective boundary layer (CBL) including the interfacial layer (IL). The results demonstrate that the UHOH RRL resolves the vertical structure of these moments. The data set which is used for this case study was collected in western Germany (50°53'50.56′′ N, 6°27'50.39′′ E, 110 m a.s.l.) within one hour around local noon on 24 April 2013 during the Intensive Observations Period (IOP) 6 of the HD(CP)2 Observational Prototype Experiment (HOPE), which is embedded in the German project HD(CP)2 (High-Definition Clouds and Precipitation for advancing Climate Prediction). First, we investigated profiles of the noise variance and compared it with estimates of the statistical temperature measurement uncertainty Δ T based on Poisson statistics. The agreement confirms that photon count numbers obtained from extrapolated analog signal intensities provide a lower estimate of the statistical errors. The total statistical uncertainty of a 20 min temperature measurement is lower than 0.1 K up to 1050 m a.g.l. at noontime; even for single 10 s temperature profiles, it is smaller than 1 K up to 1000 m a.g.l.. Then we confirmed by autocovariance and spectral analyses of the atmospheric temperature fluctuations that a temporal resolution of 10 s was sufficient to resolve the turbulence down to the inertial subrange. This is also indicated by the profile of the integral scale of the temperature fluctuations, which was in the range of 40 to 120 s in the CBL. Analyzing then profiles of the second-, third-, and forth-order moments, we found the largest values of all moments in the IL around the mean top of the CBL which was located at 1230 m a.g.l. The maximum of the variance profile in the IL was 0.40 K2 with 0.06 and 0.08 K2 for the sampling error and noise error, respectively. The third-order moment was not significantly different from zero inside the CBL but showed a negative peak in the IL with a minimum of −0.72 K3 and values of 0.06 and 0.14 K3 for the sampling and noise errors, respectively. The forth-order moment and kurtosis values throughout the CBL were quasi-normal.


2015 ◽  
Vol 58 (4) ◽  
pp. 313-324 ◽  
Author(s):  
LI Ya-Juan ◽  
SONG Sha-Lei ◽  
LI Fa-Quan ◽  
CHENG Xue-Wu ◽  
CHEN Zhen-Wei ◽  
...  

2004 ◽  
Vol 4 (1) ◽  
pp. 923-938 ◽  
Author(s):  
M. Alpers ◽  
R. Eixmann ◽  
C. Fricke-Begemann ◽  
M. Gerding ◽  
J. Höffner

Abstract. For the first time, three different temperature lidar methods are combined to obtain time-resolved complete temperature profiles with high altitude resolution over an altitude range from the planetary boundary layer up to the lower thermosphere (about 1–105 km). The Leibniz-Institute of Atmospheric Physics (IAP) at Kühlungsborn, Germany (54° N, 12° E) operates two lidar instruments, using three different temperature measurement methods, optimized for three altitude ranges: (1) Probing the spectral Doppler broadening of the potassium D1 resonance lines with a tunable narrow-band laser emitter allows the determination of atmospheric temperature profiles at the metal layer altitudes (80–105 km). (2) Between about 20 and 90 km, temperatures were calculated from Rayleigh backscattering on air molecules, where the upper start values for the calculation algorithm were taken from the potassium lidar results. Correction methods have been applied to account for, e.g. Rayleigh extinction or Mie scattering of aerosols below about 32 km. (3) At altitudes below about 25 km, backscattering on the Rotational Raman lines is strong enough to obtain temperatures by measuring the temperature dependent spectral shape of the Rotational Raman spectrum. This method works well down to about 1 km. The instrumental configuration of the IAP lidars was optimized for a 3–6 km overlap of the temperature profiles at the method transition altitudes. First night-long measurements show clear wave structures propagating from the lower stratosphere up to the lower thermosphere in most of the nights.


2012 ◽  
Vol 30 (1) ◽  
pp. 27-32 ◽  
Author(s):  
A. Taori ◽  
A. Jayaraman ◽  
K. Raghunath ◽  
V. Kamalakar

Abstract. The vertical temperature profiles in a typical Rayleigh lidar system depends on the backscatter photon counts and the CIRA-86 model inputs. For the first time, we show that, by making simultaneous measurements of Rayleigh lidar and upper mesospheric O2 temperatures, the lidar capability can be enhanced to obtain mesospheric temperature profile up to about 95 km altitudes. The obtained results are compared with instantaneous space-borne SABER measurements for a validation.


1983 ◽  
Vol 22 (19) ◽  
pp. 2984 ◽  
Author(s):  
Yu. F. Arshinov ◽  
S. M. Bobrovnikov ◽  
V. E. Zuev ◽  
V. M. Mitev

Sign in / Sign up

Export Citation Format

Share Document